Plotting the Mandelbrot set


The Mandelbrot (For a detailed description see wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set) is a 2 dimensional set that is built by a simple mathematical operation in a certain 2 dimensional interval where the mathematical operation shows a very interesting behaviour. If it is plotted, it can show a quite aesthetic image with fractal structures. The big point is the colour setting of the plot :-)




Fractal

The basic idea is:

For each point p of the set

Start with a complex number of value z =0 + j0.

Put z in the square

Add the complex value of the current point of the set to z Repeat the last 2 steps until the length of z becomes bigger than 2 or a maximum number of iterations has been done.

Then set the colour of the actual point to black if the maximum number of iterations was exceeded or according to a colour scheme if maximum number of iterations was not exceeded.

Now as


Fractal

it's


Fractal

Fractal

For the loop

And if we use (x; y) points instead of complex numbers, it's:




Fractal

Fractal


Implemented in a small C# function that returns the number of done loops for a certain point:


public int IterationsLoop(System.Windows.Point p)
{
     System.Windows.Point z = new System.Windows.Point(0, 0);
     int i;
     double xtemp;
     for (i = 0; i <= maxIterations; i++)
     {
         xtemp = z.X * z.X - z.Y * z.Y + p.X;
         z.Y = 2 * z.X * z.Y + p.Y;
         z.X = xtemp;
         if (z.X * z.X + z.Y * z.Y > 4)
              break;
     }
     return i;
}


Quite a simple thing :-)


To plot the picture with xSize, ySize the following sequence is used


CreatePic();
for (int y = 0; y < fractal.ySize; y++)
{
     for (int x = 0; x < fractal.xSize; x++)
     {
         bmpDest.SetPixel(x, y, fractal.SetColorRGB(x, y));
     }
}



With the function CreatePic() to compute the number of iterantions for each pixel of the picture and store it in the 2 dimensional array interations[x, y]:


public void CreatePic()
{
     System.Windows.Point Z = new System.Windows.Point();
     for (int x = 0; x < xSize; x++)
     {
         for (int y = 0; y < ySize; y++)
         {
              Z= ScreenToMB(x, y);
              int i = IterationsLoop(Z);
              iterations[x, y] = i;
         }
     }
}



With


public System.Windows.Point ScreenToMB(int xScreen, int yScreen)
{
     System.Windows.Point ReturnVal = new System.Windows.Point();
     ReturnVal.X = minX + (maxX - minX) * xScreen / xSize;
     ReturnVal.Y = minY + (maxY - minY) * yScreen / ySize;
     return ReturnVal;
}



For the colour setting the target is to have a as wide variety of colours in the resulting graphic as possible. For each point there is a number of iterations carried out with the above function. According to this number of iterations a colour shall be chosen. As this number of iterations is limited to maxIterations, this limit can be used. I divided this maxIterations into 5 sections where the colours red, green or blue are varied like


Fractal


The C# function for this looks like:



public Color SetColorRGB(int x, int y)
{
     double colorPart1 = maxIterations / 15.0;
     double colorPart2 = 2.0 * colorPart1;
     double colorPart3 = 4.0 * colorPart1;
     double colorPart4 = 8.0 * colorPart1;
     Color pix;
     int B;
     int G;
     int R;
 
     if (iterations[x, y] >= maxIterations)
     {
         pix = Color.Black;
     }
     else
     {
         if (iterations[x, y] < colorPart1)
         {
              B = (int)(0xff * (iterations[x, y] / colorPart1));
              G = 0;
              R = 0;
         }
         else
         {
              if (iterations[x, y] < colorPart2)
              {
                   B = 0xFF - (int)(0xff * ((iterations[x, y] - colorPart1) / colorPart1));
                   G = (int)(0xff * ((iterations[x, y] - colorPart1) / colorPart1));
                   R = 0;
              }
              else
              {
                   if (iterations[x, y] < colorPart3)
                   {
                        B = 0;
                        G = 0xFF - (int)(0xff * ((iterations[x, y] - colorPart2) / colorPart2));
                        R = (int)(0xff * ((iterations[x, y] - colorPart2) / colorPart2));
                   }
                   else
                   {
                        if (iterations[x, y] < colorPart4)
                        {
                            B = 0;
                            G = (int)(0xff * ((iterations[x, y] - colorPart3) / colorPart3));
                            R = 0xff;
                        }
                        else
                        {
                            B = (int)(0xff * ((iterations[x, y] - colorPart4) / colorPart4));
                            G = 0xff;
                            R = 0xff;
                        }
                   }
              }
         }
         if (R < 0)
              R = 0;
         else if (R > 255)
              R = 255;
         if (G < 0)
              G = 0;
         else if (G > 255)
              G = 255;
         if (B < 0)
              B = 0;
         else if (B > 255)
              B = 255;
         pix = Color.FromArgb(R, G, B);
     }
     return pix;
}




With this colour setting and a range for x of -2.2 to 0.8 and for y of -1.1 to 1.1 and maxIterations = 200 we get quite a nice graphic:


Fractal


But it becomes really fascinating if we zoom out a bit:


Fractal


And now there is a little black dot (in the white rectangle):


Fractal


If this is zoomed out, there is another similar dot and this zoomed oud out shows the same again… and 2.5 mio times zoomed out with the setting


Fractal


and maxIterations = 15000 the same shape appears as was in the beginning:


Fractal


and with


Fractal


What makes a 230 mio times zoom and maxiterations = 50000


Fractal


There are 1000 of this shapes in the plot. Isn’t that amazing? That’s makes mathematics so fascinating and beautiful :-)



The demo project consists of one main window:

Here's a little video with animated zooming deep into the image.




Fractal


Pressing the <Calc> button computes and plots the Mandelbrot set.

There is a zoom function implemented. Pressing the left mouse button and moving from top, left to bottom, right marks a zoom area by a white rectangle. Pressing <Calc> afterwards computes and plots the Mandelbrot set with this zoom setting. Pressing the right mouse button resets the current zoom.

Pressing the <Reset> button resets the zoom to the initial setting.

Pressing the <Save> button saves the current plot into the file “Fractal.png” in the application directory of this application


C# Demo Project Mandelbrot
  • Mandelbrot.zip